Please indicate how much time you spent on this assignment.

Problem 1
Let $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \cup \{+, \times, -, \div\}$ be an alphabet.

A string $w \in \Sigma^*$ is called a simple expression if it is in one of the following two forms.

1. w consists of one or more digits with no leading zeros.

2. $w = w_1 \otimes w_2$ where w_1 and w_2 are also simple expressions and $\otimes \in \{+, \times, -, \div\}$.

Therefore 1074 is a simple expression of the first kind, and $50 + 7$ is a simple expression of the second kind. Similarly, $2 - 700 \times 8 \div 10$ is also a simple expression.

Let $S \subseteq \Sigma^*$ be the set of all such simple expressions.

a) Give a regular expression that recognizes S.

b) Give a DFA or an NFA that recognizes S.

Problem 2
Let Σ be the alphabet from Problem 1, and let $\widehat{\Sigma} = \Sigma \cup \{(,)\}$. ($\widehat{\Sigma}$ contains all the elements of Σ along with the left- and right-parentheses.) A string $w \in \widehat{\Sigma}^*$ is called a complex expression if it is in one of the following three forms.

1. w consists of one or more digits with no leading zeros.

2. $w = w_1 \otimes w_2$ where w_1 and w_2 are also complex expressions and $\otimes \in \{+, \times, -, \div\}$.

3. $w = (w_1)$ where w_1 is also complex expression.

Note that all simple expressions are also complex expressions (since the first two forms are identical). However, we now can have expressions with parentheses such as $(2 - 700) \times 8 \div 10$.

Let $C \subseteq \widehat{\Sigma}^*$ be the set of all such complex expressions. Prove that C is not regular using the pumping lemma.
Problem 3
Let Σ be an alphabet and let $w \in \Sigma^*$ be a string. We write w^R to denote the reverse of w, i.e., if
$$w = a_1a_2a_3 \cdots a_n$$
where $a_i \in \Sigma$ for each $1 \leq i \leq n$, then
$$w^R = a_n a_{n-1} \cdots a_1.$$
If $A \subseteq \Sigma^*$ is a language, we also define the reversal of A to be
$$A^R = \{w^R \mid w \in A\}.$$
Prove that the class of regular languages is closed under the reverse operator.

Problem 4
Let E be the language of all evenly lengthed bit strings. Therefore, $0111 \in E$, but $000 \notin E$.

a) Prove or disprove that $E \circ E^R$ is regular.

b) Prove or disprove that $\hat{E} = \{ww^R \mid w \in E\}$ is regular.

c) Explain in your own words the difference between the languages $E \circ E^R$ and \hat{E} and why one is regular and the other is not.

(Note that if you give a disproof, you must use the pumping lemma.)

Bonus Problem: Finding the Prefixes

We say a string $x \in \{0, 1\}^*$ is a prefix of a string $y \in \{0, 1\}^*$, and we write $x \sqsubset y$, if $y = xz$ for some string $z \in \{0, 1\}^*$. For a string $x \in \{0, 1\}^*$, we write
$$P(x) = \{y \in \{0, 1\}^* \mid x \sqsubset y\}$$
to denote the set of all strings for which x is a prefix.

We extend this notation so that for a language $A \subseteq \{0, 1\}^*$, we write
$$P(A) = \bigcup_{x \in A} P(x).$$
Note that $P(A)$ is simply the language of all the prefixes of the strings in A.

Prove or disprove that if A is a regular language, then $P(A)$ is also regular.