Problem 0. Document how much time you spend on each of the following problems and cite any resources you received help from.

Problem 1. Let \(\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \cup \{+, \times, -, \div\} \) be an alphabet.

A string \(w \in \Sigma^* \) is called a simple numeric expression if it is in one of the following two forms.

1. \(w \) consists of one or more digits with no leading zeros.
2. \(w = w_1 \otimes w_2 \) where \(w_1 \) and \(w_2 \) are also simple numeric expressions and \(\otimes \in \{+ , \times, - , \div\} \).

Therefore 1074 is a simple numeric expression of the first kind; 50 + 7 is a simple numeric expression of the second kind; and 2 − 700 \times 8 \div 10 \) is also a simple numeric expression because of its recursive definition.

Let \(S \subseteq \Sigma^* \) be the set of all such simple numeric expressions. We also note that 0 \(\in S \) because 0 is a digit without any leading zeros.

(a) Give a regular expression that recognizes \(S \).

(b) Give a DFA or an NFA that recognizes \(S \).

Problem 2. Let \(\Sigma \) be the alphabet from Problem 1. Let \(\hat{\Sigma} = \Sigma \cup \{(,)\} \) (i.e. \(\hat{\Sigma} \) contains all the elements of \(\Sigma \) along with the left- and right-parentheses symbols). A string \(w \in \hat{\Sigma}^* \) is called a numeric expression if it is in one of the following three forms.

1. \(w \) consists of one or more digits with no leading zeros.
2. \(w = w_1 \otimes w_2 \) where \(w_1 \) and \(w_2 \) are numeric expressions and \(\otimes \in \{+ , \times, - , \div\} \).
3. \(w = (x) \) where \(x \) is also a numeric expression.

Note that all simple numeric expressions are trivially numeric expressions (because of the first two forms). However, we can now have expressions with parentheses such as \((2 − 700) \times 8 \div 10 \) and \(((1 + 2) \times (3 + 4)) \). Let \(N \subseteq \hat{\Sigma}^* \) be the set of all such numeric expressions.

Prove that \(N \) is not regular using the pumping lemma.
Problem 3. Let Σ be an alphabet. Given a string $w \in \Sigma^*$, we write w^R to denote the reverse of w, i.e., if

$$w = a_1a_2a_3 \cdots a_n$$

where $a_i \in \Sigma$ for each $1 \leq i \leq n$, then

$$w^R = a_na_{n-1} \cdots a_1.$$

If $A \subseteq \Sigma^*$ is a language, we also define the reverse of A to be

$$A^R = \{w^R \mid w \in A\}.$$

Prove that the class of regular languages is closed under the reverse operator.

Problem 4. Let E be the language of all evenly lengthed bit strings. Therefore, $0111 \in E$, but $000 \notin E$. (Note that $\epsilon \in E$ because we count 0 as an even number.)

(a) Prove or disprove that $E \circ E^R$ is regular.

(b) Prove or disprove that $\widehat{E} = \{ww^R \mid w \in E\}$ is regular.

(c) Explain in your own words the difference between the languages $E \circ E^R$ and \widehat{E} and why one is regular and the other is not.

(Note that if you give a disproof, you must use the pumping lemma.)

Challenge Problem (Extra Credit). We say a string $x \in \Sigma^*$ is a prefix of a string $y \in \Sigma^*$, and we write $x \sqsubseteq y$, if $y = xz$ for some string $z \in \Sigma^*$.

We define the set operators P_1, P_2, and \slash by

$$P_1(A) = \{x \in \Sigma^* \mid y \sqsubseteq x \text{ for some } y \in A\}$$

$$P_2(A) = \{x \in \Sigma^* \mid x \sqsubseteq y \text{ for some } y \in A\}$$

$$A/B = \{x \in B \mid y \sqsubseteq x \text{ for some } y \in A\}$$

for all languages $A, B \subseteq \Sigma^*$.

(a) Prove or disprove that the set of regular languages is closed under P_1.

(b) Prove or disprove that the set of regular languages is closed under P_2.

(c) Prove or disprove that the set of regular languages is closed under \slash.
