Problem 1 (Card Sharks)

(a) There are 4 ranks of race cards with 4 possible suites to draw from and 52 cards in the deck: \(\frac{4 \times 4}{52} \).

(b) By replacing the card every time, the total pool of cards remains 52: \(\left(\frac{4 \times 4}{52} \right)^3 \).

(c) The total number of possible five card straights is given by choosing a rank that can base a straight (2–10) multiplied by the number of ways to draw the straight (note that the ranks of the cards are determined by the base) and accounting for the 4 possible suites. We finally divide by the total number of possible five-card poker hands to obtain the desired probability:

\[
\frac{\binom{9}{1} \cdot 4^5}{\binom{52}{5}}.
\]

(d) To draw a pair, we choose a rank and then a subset of the 4 possible cards drawn from that rank. We then draw 3 cards (unordered) from the remaining deck, dividing by the total number of possible hands.

\[
\frac{\binom{13}{1} \cdot \binom{4}{2} \cdot \binom{50}{3}}{\binom{52}{5}}.
\]

(e) To draw a full house, we determine the ranks of the pair and the triple and then the subset of suites drawn from those ranks:

\[
\frac{\binom{13}{1} \cdot \binom{4}{2} \cdot \binom{12}{1} \cdot \binom{4}{3}}{\binom{52}{5}}.
\]

Problem 2 (Expectation)

Throughout this problem, define the following functions:

\(A(m) \) = The payoff of match \(m \) with no power play option.

\(A(m, t) \) = The payoff of match \(m \) with power play option \(t \).

\(P(m) \) = The odds of match \(m \).

with the payoffs and odds determined by the table on the Iowa lottery website. Furthermore, define the possible matches \(M \) and power play options \(T \) as:

\[M = \{ 5 + PB, 5, 4 + PB, 4, 3 + PB, 3, 2 + PB, 1 + PB, 0 + PB \} \]

\[T = \{ 2, 3, 4, 5, 10 \} \]

(a) \(E[X] = \sum_{m \in M} A(m) \cdot P(m) = 0.4567647276810106 \), so for every play ($2), you are expected to earn $0.46.

(b) We want to solve for \(A(5 + PB) \) with all other numbers determined by the grid and the desired payoff to be $2. This leads to the formula:

\[A(5 + PB) = (2 - \sum_{m \in M \setminus \{5 + PB\}} A(m) \cdot P(m))/P(5 + PB) = 6.278699405795971 \times 10^8. \]

So the jackpot must be approximately $628,000,000 for us to break even on average.
(c) The expected value of playing with the power play option (where the power play options are all equally likely) is:

\[
E[X] = \sum_{t \in T} E_t[X] \cdot \frac{1}{|T|} = \frac{1}{5}(0.542 + 0.777 + 1.245 + 1.480 + 2.651) = 1.339.
\]

To play with the power play option, you need to spend one extra dollar, a \(3/2 = 1.5\) increase in initial cost. The increase in payoff is greater at \(1.339/0.46 = 2.91\), so it is worthwhile to add the power play option (assuming that the options are equally likely which they aren’t in practice).

Problem 3 (Faulty)

(a) \(P(B) = 0.20\), as advertised in the table.

(b) The probability that a part is faulty is the weighted average of the faults of the individual machines:

\[
P(\text{faulty}) = 0.30 \times 0.025 + 0.20 \times 0.015 + 0.40 \times 0.025 + 0.10 \times 0.01 = 0.0215.
\]

The probability that a part is both faulty and comes from \(B\) is the product of these individual probabilities:

\[
P(B \cap \text{faulty}) = 0.20 \times 0.015 = 0.003.
\]

Thus, the final desired probability is given by:

\[
P(B \mid \text{faulty}) = \frac{P(B \cap \text{faulty})}{P(\text{faulty})} = \frac{0.003}{0.0215} = 0.1395.
\]

Problem 4 (Probabilistic Sampling) Clearly if \(n \leq k\), then we are able to fit the \(n\) elements of the collection into the \(k\)-sized sample set. Thus, consider the case where \(n > k\), i.e., there are more elements than space in the sample set.

Claim 1. After the \(i\)th iteration of the algorithm, the first \(i + k\) elements of the collection have probability \(k/(k+i)\) of being in the sample array.

Proof. We prove this claim by induction on the number of iterations of the algorithm, \(i\).

- \(i = 0\). When \(i = 0\), we have loaded the first \(k\) elements of the collection into the sample. These first \(k\) elements have probability \(\frac{k}{k} = \frac{k}{k} = 1\) of being in the sample.

- \(i, i > 0\). By our inductive hypothesis, the first \((i - 1) + k\) elements of the collection have probability \(k/(k + (i - 1))\) of being in the sample array. Consider one of the first \(i + k\) elements in the array: it is is either the \(i\)th element or one of the previous ones. The \(i\)th element has probability \(k/(k + i)\) of entering the array as the random number generated by the algorithm in the range \(k + i\) must hit one of the \(k\) possible indices of the array. An element that is not the \(i\)th element has probability \((k + (i - 1))/(k + i)\) of staying in the area as it is only replaced if its index is randomly chosen. Thus the probability of this element staying in the sample is:

\[
\frac{k}{k + (i - 1)} \cdot \frac{k + (i - 1)}{k + i} = \frac{k}{k + i}.
\]
Claim 2. After completion of the algorithm, the n elements of the collection each have probability k/n of being in the sample array.

Proof. The algorithm goes through $n - k$ iterations, so by the previous claim, after the algorithm is over, each of the $(n - k) + k = n$ elements of the collection have probability:

\[
\frac{k}{k + (n - k)} = \frac{k}{n}
\]

of being in the sample.

(Note: this algorithm, so-called algorithm R, is an example of a probabilistic technique called reservoir sampling.)