Overview

- Preliminaries.
 - Admin.
 - A C problem
 - Ushahidi and the project
 - Questions on HW 7
 - Questions on Exam makeup
 - HW 8
- An introduction to merge sort.
- Analyzing merge sort.
- Lab.

Admin

- While you’re waiting, fork and clone https://github.com/Grinnell-CSC207/sorting
- Today we will do a quick analysis of merge sort and then follow it up with some lab exercises.
- I’m moving the due time for the electronic and printed versions of the exam to 10:30 pm on Friday night. Put the printed version under my door.
- Upcoming extra credit opportunities:
 - Study in Budapest Lunch, Today
 - Learning from Alumni, Thursday: Jordan Shkolnick ’11 (Microsoft)
 - CS Table, Friday: Ambient Belonging
 - One Grinnell Prize Event next week

A C Problem

```c
char *
foo(char *t, char *s)
{
    while (*t++ = *s++)
    
    return t;
} // for
```

Ushahidi and the Project

- We should discuss the project and the role of Ushahidi in this class. Clearly, we were less successful at getting the materials ready than we would have liked this summer, and I was as unsuccessful at getting them ready during the semester.
- I’ve removed Ushahidi from HW 8.
- Project summary:
- Find a client; negotiate the design of an Ushahidi installation
- Build an Ushahidi installation for that client
- Write some custom report or tool for the client

Do you still want to do the project? Revisit Friday.

HW 7

Due tonight

Why implement java.util.Iterator when we have cursors?

Real Java programmers build iterators for any collection class they design

```java
public class MyIterator<T> implements java.util.Iterator<T> {
    // +--------+----------------------------------------------------------
    // | Fields |
    // +--------+
    Node<T> pos;
    // +----------------+----------------------------------------------------------
    // | Constructors |
    // +----------------+

    // +----------------+----------------------------------------------------------
    // | Methods |
    // +----------------+

    public T next() {
        // Find out what’s right after pos
        // Advance the position
        // Return the value we got in step 1
    }
    public boolean hasNext() {
    }
    public void remove() {
        throw new UnsupportedOperationException();
    }
}
```

Once you’ve implemented iterators, folks can write

```java
DoublyLinkedList dll;
for (val : dll) {
}
```

When should I put the type variable in brackets?

Usually, whenever you are referring to a generic/parameterized class.
Not when you are using it as a type

So

public T extractValue(Node<T> node)

Also when parameterizing static methods

public static <T> returnType methodName(...)

Exam

Any hints on DNF?

Write isDNF

HW 8

- Implement five different sorting methods;
- Do other stuff

An introduction to merge sort

- Two sorting algorithms, both $O(n^2)$
- Can I do better?
 - Practical: Look for other algorithms
 - Theoretical: Does one exist: A compare/swap sorting requires $O(n \log n)$ steps
- There are $O(n \log n)$ sorting algorithms based on compare/swap
 - Merge sort
 - Quicksort
 - Heap sort
- One key approach to speeding up algorithms: Divide and conquer
- Divide the array in half
- Sort each half
- Merge the two halves:
 - Create a new array
 - Repeatedly grab the smallest remaining thing from each array and copy to the new array - $O(1)$ steps

Analyzing merge sort

- How do we figure out how fast this is? Recurrence relations!
- Write a function that describes the running time of our algorithm on input of size n
- $t(n) = t(n/2) + t(n/2) + n$
- $t(n) = 2^*t(n/2) + n$
• How do we figure this out?
• Base case: t(1) = 1
• Build up
 o t(2) = 2t(2/2) + 2 = 2t(1) + 2 = 2 + 2 = 4
 o t(4) = 2t(4/2) + 4 = 2t(2) + 4 + 4 = 12
 o t(8) = 212 + 8 = 32
 o t(16) = 232 + 16 = 80
• Build down
 o t(n) = 2t(n/2) + n // Note that t(n/2) = 2t(n/4) + n/2
 o t(n) = 2(2t(n/4) + n/2) + n // Simplify
 o t(n) = 4t(n/4) + 2n // Note that t(n/4) = 2t(n/8) + n/4
 o t(n) = 4(2t(n/8) + n/4) + 2n // Simplify
 o t(n) = 8t(n/8) + 3n // Note that t(n/8) = 2t(n/16) + n/8
 o t(n) = 8(2t(n/16) + n/8) + 3n // Simplify
 o t(n) = 16t(n/16) + 4n
 o t(n) = (24)t(n/(2^4)) + 4n
 o t(n) = (2^x)t(n/(2^x)) + xn
 o Choose k s.t. 2^k = n
 o t(n) = nt(n/n) + kn
 o t(n) = nt(1) + kn
 o t(n) = n + kn
 o If 2^k = n, then k = log2(n)
 o t(n) = n + n^2log2(n)
 o t(n) is in O(nlogn)

Lab

Copyright (c) 2013 Samuel A. Rebelsky.

This work is licensed under a Creative Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.