Analysis of Searching Times

Given a binary search tree:

```
        H
       /\    /
      D --L  G
     /  /  /  /
    B  F  J  N
   /\   /\   /\    /
  A C E I K M O
```

Analyze how much time might be spent in searching, on average.

Possible assumptions:
1. All items in tree equally likely
 or
 Some items more likely than others
2. Specific items know ahead of time
 or
 Exact data cannot be anticipated
3. Data known to be in tree
 or
 Data may or may not be in tree

Terminology

Level of a node
- Many definitions may be found
 1. Number of nodes on path from given node to root
 2. Number of comparisons needed to find node, starting at root.

(Note Def 2 = 1 + Def 1)

In this class, use Definition 2
(Dr. Dale uses Definition 1)

Internal Path Length
- Sum of levels of nodes within tree

If all nodes equally likely in search and if data is in tree, then

\[
\text{Avg search steps} = \frac{\text{Internal path length}}{n}
\]

External node (or failure node)
- Object 'pointed to' by nil pointer

(Other nodes sometimes called internal nodes)

External Path Length
- Sum of levels of external nodes
If data not in tree and if all failure nodes equally likely in search, then

\[\text{Avg steps} = \frac{\text{External Path Length}}{(n+1)} \]

Now, suppose we know the normal frequency that we will see each node (internal or external) during the search.

Given a tree with nodes \(a_1, \ldots, a_n \)
Let \(f_i \) be the frequency of node \(a_i \)

Then

- the \textit{weight of the tree} = \(f_1 + \ldots + f_n \)
- the \textit{weighted internal (or external) path length} is
 \[f_1 \times \text{level}(a_1) + \ldots + f_n \times \text{level}(a_n) \]

Sometimes this is also called the \textit{weighted cost} of the tree.

Computational Formula:

Suppose \(T \) is a tree with
- root \(R \)
- left subtree \(T_L \)
- right subtree \(T_R \)

How does weighted cost of \(T \) relate to data we might know about \(R, T_L, \) and \(T_R \)?

First, look at example:

```
    H
   / \   / \\
  D   L  B    F
 / \ / \ / \ \\
A  C E  G I K M O
```

Note: Level of each node in each subtree increases by 1.
Now consider computation of weighted cost (WC) for overall tree:

\[WC = f_1 \cdot \text{level}(a_1) + \ldots + f_n \cdot \text{level}(a_n) \]

where levels are in new tree

If we consider \(a_1 \) as the root of this new tree

\[WC = f_{\text{root}} + f_2 \cdot \text{level}(a_2) + \ldots + f_n \cdot \text{level}(a_n) \]

\[= f_{\text{root}} + f_2 \cdot (1 + \text{level}_{\text{old}}(a_2)) + \ldots + f_n \cdot (1 + \text{level}_{\text{old}}(a_n)) \]

\[= f_{\text{root}} + f_2 + f_2 \cdot \text{level}_{\text{old}}(a_2) + \ldots + f_n + f_n \cdot \text{level}_{\text{old}}(a_n) + \]

\[= f_{\text{root}} + f_2 + \ldots + f_n + \text{weighted cost for both subtrees} \]

\[= \text{weight of new tree} + \text{weighted cost of subtrees} \]

Notation

Given binary search tree \(T \)
- Root \(R \)
- Subtrees \(T_L, T_R \)
- \(n \) nodes, \(a_1, \ldots, a_n \)
- \(\text{level}(N) = \# \text{nodes on path to root} \)
- \(\text{level}(R) = 1 \)
- Weights or frequencies \(f_1, \ldots, f_n \)

\[\text{Weight}(T) = f_1 + \ldots + f_n \]

\[\text{Weighted Cost}(T) = \sum f_i \cdot \text{level}(a_i) \]

\[= \text{Weight}(T) + WC(T_L) + WC(T_R) \]
Problem: Put nodes in tree so weighted cost is a minimum.

Result is called an optimal binary search tree.

Observation 1:

If T is an optimal search tree for A_1, \ldots, A_n, then so are T_1, T_2.

Observation 2:

How to build T, given A_1, \ldots, a_n?

One approach:

Consider each node A_1, \ldots, a_n.

For A_n,

find optimal tree for $A_1, \ldots, a_{n-1} = T_{n-1}$

find optimal tree for $A_{n-1}, \ldots, a_n = T_{n-1}$

Then compare possibilities

Choose best possibility.
Example 1

Given a_1, a_2, a_3, a_4, a_5

Frequencies 9 3 4 8 1

Easiest to work bottom up

Best trees - 1 node

$T_1 = a_1, T_2 = a_2, T_3 = a_3, T_4 = a_4, T_5 = a_5$

Weight 9 3 4 8 1

WC 9 3 4 8 1

root a_1, a_2, a_3, a_4, a_5

Best trees - 2 (adjacent) nodes

$T_{12}, T_{23}, T_{34}, T_{45}$

Weight 12 12 7 7 12 12 9 9

WC 15 21 11 16 20 16 10 17

root a_1, a_2, a_3, a_4, a_5

Best trees - 3 (adjacent) nodes

T_{13}, T_{24}, T_{35}

Weight 16 16 16 15 15 15 13 13 13

WC 26 28 31 35 26 25 26 18 29

root a_1, a_2, a_3, a_4, a_5

use $T_{13}, a_3, T_{12}, T_{34}, a_3, T_{23}, T_{35}$

Best trees - 4 (adjacent) nodes

T_{14}, T_{25}

Weight 24 24 24 24 16 16 16 16

WC 49 49 47 50 42 29 47 41

root a_1, a_2, a_3, a_4, a_5

use $T_{14}, a_3, T_{12}, a_4, T_{23}, T_{35}$
Best trees - 5 nodes

Next, consider possibility search can fail,

Where frequency of failure also known

Approach is similar, except failure nodes cannot be internal.

Must decide level to use for external node
- could use level of parent
- could use one level more.

Change notation to label subtrees by failure nodes.

Weighted Cost = 3.3 + 9.2 + 4.1 + 8.2 + 1.3
= 9 + 18 + 4 + 16 + 3
= 50

T15

<table>
<thead>
<tr>
<th>Weight</th>
<th>25</th>
<th>25</th>
<th>25</th>
<th>25</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>U/C</td>
<td>5-2</td>
<td>9-25</td>
<td>5-2</td>
<td>5-2</td>
<td>72</td>
</tr>
<tr>
<td>Level</td>
<td>T5</td>
<td>a1, b5</td>
<td>T15, b5</td>
<td>T15, a5</td>
<td>T15</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
T15
\end{align*}
\]

\[
\begin{align*}
\text{Weighted Cost} &= 3.3 + 9.2 + 4.1 + 8.2 + 1.3 \\
&= 9 + 18 + 4 + 16 + 3 \\
&= 50
\end{align*}
\]
Example - Counting External level = Level Parent

Node: C F J P (p's)
Frequency: 5 10 3 8 (p's)
Failure Preg: 1 2 2 1 3 (p's)

Again, work proceeds bottom-up

Trees - external node

Weight: T0 T1 T2 T3
Weight: 1 2 2 1 3
WC: 0 0 0 0 0
Root: - - - - -
Use: - - - - -

Trees - 2 external nodes

Weight: T01 T12 T23 T34
Weight: 8 0 14 6 12
WC: 0 0 0 0 0
Root: C F J P
Use: T0, T1 T1, T2 T2, T3 T3, T4

Trees - 3 external nodes

Weight: T02 T13 T24
Weight: 20 20 18 17
WC: 0 0 17 0
Root: C F J P
Use: T0, T1, T2 T1, T3 T2, T3 T3, T4

Trees - 4 external nodes

Weight: T03 T14
Weight: 24 24 24 24
WC: 0 0 0 0
Root: C F J P
Use: T0, T1, T2, T3 T1, T3 T2, T3 T3, T4
Example - With External Level = Parent Level + 1

Node: C F J P
Frequency: 5 10 3 8 (p's)
Failure Freq.: 1 2 2 1 3 (q's)

As before, work proceeds bottom-up.
Only change from before in first step.

Trees - 1 external node

<table>
<thead>
<tr>
<th>Node</th>
<th>T00</th>
<th>T11</th>
<th>T22</th>
<th>T33</th>
<th>T44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>WC</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Root</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trees - 2 external nodes

<table>
<thead>
<tr>
<th>Node</th>
<th>T01</th>
<th>T12</th>
<th>T23</th>
<th>T34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>8</td>
<td>14</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>WC</td>
<td>11</td>
<td>18</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Root</td>
<td>C</td>
<td>F</td>
<td>J</td>
<td>P</td>
</tr>
<tr>
<td>Use</td>
<td>T00,T11</td>
<td>T12,T22</td>
<td>T23,T33</td>
<td>T34, T44</td>
</tr>
</tbody>
</table>
Trees - 3 external nodes

<table>
<thead>
<tr>
<th>Tree</th>
<th>Weight</th>
<th>WC</th>
<th>Root</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{o2}</td>
<td>20 \times 19 + 18</td>
<td>39 \times 33</td>
<td>C</td>
<td>T_{o2}, T_{o3}</td>
</tr>
<tr>
<td>T_{i3}</td>
<td>18 \times 27 + 17 \times 37</td>
<td>21 \times 35 + 9 \times 29</td>
<td>F</td>
<td>T_{i3}, T_{i4}</td>
</tr>
<tr>
<td>T_{i4}</td>
<td>17 \times 29</td>
<td>9 \times 29</td>
<td>J</td>
<td>T_{i3}, T_{i4}</td>
</tr>
</tbody>
</table>

Trees - 5 external nodes

<table>
<thead>
<tr>
<th>Tree</th>
<th>Weight</th>
<th>WC</th>
<th>Root</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{o4}</td>
<td>35 \times 40 + 35 \times 29</td>
<td>96 \times 75</td>
<td>C</td>
<td>T_{o4}, T_{o5}</td>
</tr>
<tr>
<td>T_{i5}</td>
<td>35 \times 84</td>
<td>35 \times 84</td>
<td>F</td>
<td>T_{i5}, T_{i6}</td>
</tr>
<tr>
<td>T_{i6}</td>
<td>25 \times 82</td>
<td>P</td>
<td>J</td>
<td>T_{i5}, T_{i6}</td>
</tr>
</tbody>
</table>

Trees - 4 external nodes

<table>
<thead>
<tr>
<th>Tree</th>
<th>Weight</th>
<th>WC</th>
<th>Root</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{o3}</td>
<td>24 \times 54</td>
<td>54 \times 49</td>
<td>C</td>
<td>T_{o3}, T_{o4}</td>
</tr>
<tr>
<td>T_{i4}</td>
<td>24 \times 64</td>
<td>24 \times 60</td>
<td>F</td>
<td>T_{i4}, T_{i5}</td>
</tr>
<tr>
<td>T_{i5}</td>
<td>29 \times 63</td>
<td>29 \times 61</td>
<td>J</td>
<td>T_{i4}, T_{i5}</td>
</tr>
</tbody>
</table>

Diagram:

```
     F
    / \  \
   /   \ /
  /     \|
 P     C
    /\ /
   / \|
  1   3
```

```